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Universality class for domain growth in random magnets 
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Department of Theoretical Physics, University of Manchester. Manchester MI3 9PL UK 

Received 7 June 1991 

AbslracL A zn king model with random ferromagnetic bonds IS studied by Monte Carlo 
simulation following a quench from T = m to T < T,. The domain size grows as 
L ( t )  - (In t l t o ) '  at late times. The data are eonsistcnl with the theoretical prediction 
E = 4. The exponent A, defined by (S,(O)S,(t)) - L(t)- ' ,  and the scaling functions 
for the spatial correlations, are very clme to thme of the pure system, suggesting that 
pure and random systems belong to the same universality class. 

The kinetics of domain growth following a quench from the disordered to the ordered 
phase has been a focus of considerable attention for some time [l]. It is known that 
the ordering dynamics are governed principally by the conservation properly of the 
order parameter. A conserved order parameter gives rise to 'model B dynamics, 
which describes phase separation or 'spinodal decomposition' in alloys. Here we 
are interested in the kinetics of a scalar, non-conserved order parameter ('model A' 
dynamics), appropriate for the order-disorder transitions observed in many binary 
alloy systems. 

The kinetics of a non-conserved ZD king model without impurities, following a 
quench from high temperature into the ordered phase, are well understood [2,3]. A 
scaling regime is entered for sufficiently long times during which the growth of order 
is characterized by one length scale, the domain scale L( t ) .  The prediction that 
L ( t )  scales as t i l2 ,  independent of spatial dimension d, has been amply confirmed 
by both analytic [2-4] and numerical [ 5 4 ]  work as well as by experimental studies 
[2] on ordering alloys such as Fe-AI and Cu-Au However, the effect of quenched 
impurities on the kinetics of domain growth is less well understood. Predictions have 
been made for the growth law of L(1)  for the random-bond Ising ferromagnet (RBIF) 
using scaling arguments based on the energetics of a single interface [9]. These suggest 
that asymptottcaiiy the domains grow iogarithmicaiiy with time, L ( t j  - ( i n  t ) * ,  where 
z = (2 - C ) / x  is related to the exponents x and C describing the scale-dependence. 
of energy barriers in the system, and of interfacial roughening due to the disorder, 
respectively. Previous simulation studies confirm the slow dynamics but the exponent 
z has never been accurately determined. The results of Grest and Srolovitz [lo] on 
the disordered Ising ferromagnet did suggest a logarithmic form for L ( t ) ,  but they 
were unabie to distinguish a simpie in  i behaviour from a power of i n  i. Subsequent 
simulations [ I l l  have confirmed the (In t ) =  form, but again a precisc determination 
of z has not proved possible. In fact a direct fit of L ( 1 )  to (In t j 5  generally gives 
I significantly smaller than the theoretical prediction (for d = 2) of 4. Since In t is 
never particularly large, however, it is important in practice to include a scale time 
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t o  in the fit, i.e. to fit to [ln(t/t,,)r]. With this refinement, we find results consistent 
with I = 4. 

In previous studies L ( t )  has been measured indirectly. This letter is, to our 
knowledge, the first time that L( t )  for a disordered system has been obtained from 
a direct measurement of the equal-time spin-spin correlation function C ( r ,  t ,  t). 
through the scaling property C(r,t,t) = f , , ( ~ / L ( t ) ) .  We find that scaling is well 
satisfied for L ( t )  = Lo -I- [Aln(t / to)14 for a suitable to,  where the offset Lo is 
a correction to scaling. However, our main purpose here is not to determine the 
precise form of the domain growth law, which would require orders of magnitude 
more CPU time than we have used, but rather to establish the universality class for 
domain growth in disordered systems. lb this end we compute the exponent 5, which 
describes the correlation of the order parameter field with the initial conditions 
112,131. Specifically, the autocorrelation function A ( t )  E (Si(0)Si(t)) - L(t ) -X .  
We find a 5 close to that of the pure system. Furthermore, the scolingfunction f,(z) 
is indistinguishable from that of the pure system, confirming a conjecture made in 
[12]. The scaling function for the spatial correlation with the initial condition is also 
very close to the that of the pure system. lbgether, these results strongly suggest that 
the universaliy class for domain growth in disordered systems is the same as that of 
pure systems. 

The equal-time correlation function, C ( r , t , t )  = (+(z , t )$(z  -I- r , t ) ) ,  where 
4(r ,  t )  is the (scalar) order parameter field and the angle brackets indicate averages 
over disorder, thermal noise and initial conditions, is a central quantity in the study 
of domain growth. It is generically found to exhibit the scaling form [I] 

C(r,t, t )  = f , ( ~ / U t ) ) .  (1) 

Correlations of the order parameter at two different times are also of interest, 
since these are described by the non-trivial dynamic exponent x 112,131. We define 
C(r,O,t) = (m(z,O)q5(z + r , t ) ) ,  the spatial correlation with the initial condition. 
General scaling arguments [13,14] suggest 

c(r,o,t) = ~ ( t ) - ’  f ( r /L ( t ) ) .  (2) 

This letter is organized as follows. First, we contrast the  dynamics of the RBIF 
to those of the pure system and then recall the scaling arguments that lead to the 
predicted logarithmic dependence of L ( t )  on time. We then give details of our 
simulations and present the results. In particular, the scaling functions f,( z) and 
f(z) in (1) and (2) are obtained for the first time in a random system. We find that 
both they, and the exponent i, are very similar to the pure system results obtained 
in previous studics, i.e. our data support the idea that the random system is in the 
same universality class as the pure system. 

Consider an king ferromagnet with random exchange couplings, quenched from 
the high-tempemture phase to a temperature T < T,. The system will order in a 
manner qualitatively similar to the pure system, i.e. it will order locally with domain 
walls separating regions (‘domains’) of predominantly up and down spins. The average 
linear domain size L ( t )  grows with time due to domain wall motion driven by the 
curvature of the walls [2,3]. Disorder, however, breaks the translational symmetry of 
the system, and the domain walls tend to be pinned in certain favourable locations 
where the exchange couplings are weaker than average. Late-stage growth requires 
thermally activated motion of the domain walls over scale-dependent energy barriers. 
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The ‘standard argument’ for L( t )  may be paraphrased as follows. A single do- 
main wall in equilibrium, imposed by, for example, applying antiperiodic boundary’ 
conditions in one direction, is characterized by a ‘roughening exponent’ { such that 
the typical transverse displacement of the wall, due to the disorder, over a length L is 
of order L(, and by an exponent x such that the typical sample-to-sample fluctuation 
in the energy of the wall around its mean value varies as LX. These exponents are 
related by the scaling law [9] x = 2C + d - 3. For d = 2 they have the values [9] 
{ = 2/3, x = 1 /3. To apply these concepts to non-equilibrium domain growth, one 
makes the further assumption that the energy barriers between metastable positions 
of a piece of wall of length L also scale as LX. Naiveiy, one might assume that 
the appropriate lengthscale to determine the barriers to domain growth at time t 
would be the domain scale L ( t )  itself. This would imply, through simple Arrheniw 
activation, the relation In t - L ( t ) X / T ,  or L ( t )  a (Int)’/x,  i.e. L ( t )  -(In t ) 3  for 
d = 2. However, Villain [15] has argued that the walls can move in shorter sections of 
length I, where 1 is the minimal lengthscale on which the domain walls ‘notice’ their 
curvature, i.e. the disorder roughening - 1( should he comparable to the distortion - 1 2 / L ( t )  due to the curvature of the wall (with typical radius of curvature L ( t ) ) .  
This gives 1 - L ( t ) 1 / ( 2 - ( ) ,  an activation barrier of order I X  - L(t)X/(2-() and a 
domain growth law L ( t )  - ( ln t )=  with 1: = (2 - C ) / x .  An equivalent argument in 
terms of driving forces (due to curvature) and pinning forces (due to disorder) has 
been given by Nattermann [16]. For d = 2 the prediction is L ( t )  -, (In t)4. 

The main goals of this work were to test this prediction through Monte Carlo 
simulations, and to  determine the universality class for domain growth in random 
systems through measurements of the exponent x and the scaling functions. The 
Hamiltonian is the conventional king Hamiltonian H = -CL.,,) Ji ,SiSj ,  where 
the sum is over nearest-neighbour pairs and Ji j  > 0. Simulations were performed 
for lattice sizes of up to N = 6002 spins, with periodic boundary conditions. Data 
for smaller systems show that the results presented here for N = 6002 are not 
significantly finite-size affected. The spins are initially given a random configuration 
(corresponding to a T = CO state) and then evolved at a temperature T < T, using 
a standard heat bath algorithm, vectorized by sequential updating of each sublattice 
in turn. The results were averaged over an ensemble of 84 independently generated 
initial configurations (of spins and bonds), with the final time measurement being at 
15000 MCS. (1 MCS means one update of both sublattices). 

Some preliminary studies using different disorder distributions and quench tem- 
peratures were made in order to choose parameters giving a reasonably large scaling 
regime in the simulation time available. For very weak disorder, scaling characteristic 
of the pure system ( L ( t )  - t ’ / * )  persists until late times, whereas for very strong dis- 
order the system rapidly becomes h z e n  up, with very slow domain growth. The data 
presented below were obtained with a final quench temperature Tr = 0.35 T,( l ) ,  
where TJ1) is the critical temperature for a pure ZD king  model with Ji ,  = 1. The 
lattice bonds were distributed uniformly in the range 0.4 < J i j  4 1.6. Note that 
Tr < T,(0.4), so T, is definitely below T, of the random system. In most previous 
studies [lo, 111 disorder has been introduced through dilution. To generate reasonably 
strong disorder, however, it is necessary to go quite close to the percolation thresh- 
old, which introduces additional complications associated with the fractal geometry 
on length scales shorter than the percolative correlation length. These unwanted 
complications are avoided by using a continuous distribution of bond strengths. 

Data for the equal-time corelation function C ( r ,  t ,  t )  = ( S i ( t ) S j ( t ) ) ,  (where 
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(. . .) indicates a simultaneous average over initial conditions, thermal noise and 
quenched disorder) are shown in figure 1 where, as elsewhere in this letter (un- 
less stated otherwise) the errors are smaller than the symbols. The abscissa in 
the plot is the scaling variable r / L ( t ) ,  where L ( t )  was fixed by the condition 
C( L( t ) ,  t ,  t )  = 1 /2. The excellent collapse of the data on to a scaling curve (times 
2 1000 are shown) confirms the scaling form (1). The fact that the scaling function 
in figure 1 extrapolates to a value close to unity for r / L ( t )  - 0 shows that the 
equilibrium magnetization is almost saturated at this temperature. Included on the 
plot are the T = 0 data [8] for the pure system at 1 = 640 MCS, with L(1)  defined 
the same way. These data fit perfectly onto the same scaling curve. 
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Flgvre 1. Scaling plots for the 2D R8lF quenched from T = a) to T = 0.35 T, (1). The 
upper dam set is lhe equal-time correlation function, C(t, I, 1) .  calculated for sites i and 
j separated by T laltice spacings along a lattice direction. The dala represent an average 
of 84 histories of a 600' system. for times up l o  15000 MCS. me domain size L ( t )  
was delermined from C ( L ( i ) , i ,  1 )  = 112. The lower data set give the scaling plot 
for the spatial correlalion with the initial spin configuration. plolted as L(i ) 'C(r ,O,  I) 
versus r / L ( t ) ,  with x = 1.24. Data for the pure system a1 T = 0 and i = 640 MCS 

are included in both dala seis for comparison. 

We have tried to determine the logarithmic domain growth exponent z by fitting 
L ( t )  to [In(t/t,)]'. We found it impossible, however, to determine z with any 
precision due to the limited dynamic range available. A direct fit to ( I n  1)" (i.e. 
1 ,  = 1) is consistent with the data between 2000 and 15000 MCS for I = 3, but SO 

are other reasonable values of I for t o  # 1: there is no a priori reason to choose 
1, = 1. Instead, therefore, we amunie that z = 4 is correct. We can then fit all the 
data to the form 

L ( 1 )  = Lo  + [ A l ~ ~ ( t / t ~ ) ] ~ .  (3) 

The 'offset' Lo is an attempt to incorporate the leading 'correction to scaling', which 
is expected [12] to be of relative order l / L ( t ) .  ?b determine Lo and t o  we plot 
( L  - versus In 1 and choose Lo  to give the best straight line. This gives 
Lo = 4.49, A = 0.2227 and, from the intercept with the abscissa, t o  = 0.4668. 
The data for L ( t )  are presented in figure 2. The straight-line fit shown was used 
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for L ( 1 )  in the scaling plots of figure 1. It should be emphasized, however, that 
the quality of the scaling plots obtained, and the conclusions concerning universality 
classes, are not dependent on this particular way of fitting L ( t ) .  

Figure 2. Time-dependence of the domain size L(1) .  fitted to (3) with LO = 4.49. The 
straight line show the best fit lo the data. 

In figure 1 we also present the data for the scaling function f(r,t), defined in 
(2), plotted as L ( t ) x ( S i ( 0 ) S j ( t ) )  versus r / L ( t ) ,  using the pure system value [SI 
x Y 1.24. The data collapse is very satisfactory. Again, the T = 0 pure system 
data [17] at t = 640 MCS are included for comparison. The agreement is generally 
excellent except for small r / L (  t )  where both pure and random systems fail to scale 
perfectly, for reasons which we now discuss. 

In previous studies of pure systems the dynamic exponent x has been measured 
directly through the auto-correlation function, A ( t )  = (S i ( t )S i (0) ) .  Note that A ( t )  
is simply the spatial correlation with the initial condition, C ( r ,  0, t ) ,  with r = 0. As 
in the corresponding results for the pure system [8,12], there is some curvature in 
the data for A(1).  Therefore, the data were analysed using a procedure similar to 
that employed in studies of spinodal decomposition [18], and in pure system studies 
[ S ,  121: an effective exponent is defined via 

~ 

A,, = - Iog,o[A(~)/A(201/  log ,o lL(~) /L(2 t ) l .  (4) 

This effective exponent is shown versus l / L ( t )  in figure 3. The errors in this plot 
are comparable to the scatter of the data points. It is plausible that the deviation 
of & ( t )  from the asymptotic x should vanish as the length-to-area ratio of the 
domains: xeR(t) - x - l / L ( t ) .  A linear extrapolation of the data to l / L ( t )  = 0 
gives x = 1.26 f .02, consistent with the pure system estimate of 1.24. At the latest 
time reached in the simulations, however, X, , ( t )  Y 1.17, which accounts for the 
small departures from scaling evident in figure 1. 

We have noted that the scaling functions for C ( r ,  1 , t )  and C(r ,O,  1 )  for the 
random-bond system are virtually identical to corresponding functions for the pure 
king system IS, 171. In particular, C ( r ,  t ,  t )  is linear in r for small r, i.e. C ( r ,  t ,  t )  
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Flgure 3. Effective expanenr ,iem, defined in lhe text. as a function of the recipmcal 
of the domain Size L ( f ) .  The dala represenl an average of 84 histories. Each data 
point funher represenls the average Over a length of lime of 500 M(S (a 'smwlhing' 
p d u r e  designed lo reduce slalistical Ruclualions). me conlimous curye is Ihe besl 
straighl line through the data. 

1 - constant ( T / L ( ~ ) )  for T L( t ) ,  consistent with the familiar 'Porod's law' of 
pure systems (191. At first sight this is surprising, as the derivation of Porod's law 
assumes smooth domain walls whereas in the random-bond system the walls are 
roughened by the disorder. For rough walls, the structure factor should behave as 
Sk(i,t) .., for kb >> 1, where 6 is a 'crossover length' defined such that the 
width of the wall at length scale L due to disorder roughening is w = b ( L / b ) (  (201. 
Since. w / L  N ( b / L ) ( ' - O ,  and ( < 1, the walls are 'rough' (w > L) for L a b ,  but 
effectively smooth (w < L )  for L >> 6. In the latter regime, which includes the late- 
stage scaling region since 6 is time-independent, the Porod law S, ( t , t )  - !ddC1) 
is recovered [20]. (Porod's law survives thermal roughening of the domain walls for 
the same reason-the walls are smooth on the scale of the domain size.) This line of 
argument also explains why one expects pure and random systems to he in the same 
universality class for phase ordering. From a renormalization group viewpoint, the 
disorder is irrelevant at the strong coupling fmed point ('ferromagnetic sink') which 
drives the domain growth: the fluctuations in the coarse-grained Hamiltonian, scaling 
as LX, are asymptotically negligible compared to the mean, which scales as Ld-'.  
(The result x < d - 1 follows from the scaling law x = '2( + d - 3 and the inequality 
( < 1 which holds for any system above its lower critical dimension.) However, there 
is a non-trivial renormalization of the kinetic coefficient on scales up to the 'Villain 
length' I - L ( t ) 1 / ( 2 - ( )  < L ( t ) ,  which leads to the slower domain growth in the 
disordered system. On scales larger than 1, the growth is curvature driven, as in the 
pure system, and should give rise to the same scaling functions. 

In summary, we have studied the growth of order in a random bond ZD king 
system, following a quench from high temperature into the ordered phase. The 
domain size grows logarithmically, L( t )  - ( In  i)*, but to pin down the exponent z 
would require orders of magnitude more computer time. Instead we have devoted 
most attention to the scaling functions and to the exponent x that enters the scaling 
form for the two-time correlation function These results strongly support the idea 
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that pure and random systems are in the same universality class. 
After the manuscript was complete we received a preprint from Puri er al [Zl], 

who have studied domain growth in random magnets using a cell dynamical approach. 
Their domain size results are consistent with (In t ) 4  growth, and the equal-time 
scaling function is the same as for the pure system, consistent with our findings. They 
did not study two-time correlations. 

AB thanks M A Moore and A P Young for helpful discussions, M Grant and 
G S Grest for useful correspondence, and S Puri for a preprint of [Zl]. KH thanks 
the SERC for a Research Studentship. 

References 

[I] For r e v i m  see, e.g., Gunton J D, San Miguel M and Sahni P S 1983 PhoM Pom’tim ond CriIird 

F u N ~ ~ w ~  U 1985 Adu Phys 34 703 
Binder K 1987 Rep. Pros Phys. 50 783 

[2] Allen S M and Cahn J W 1979 Acta M e f d  27 1085 
[3] Lifshitz I M 1962 Z h  E k p .  Tern Fiz 42 1354 (Engl. transl. 1962 Sob! Phys.-JETP 15 939) 
(41 Kawasaki K, Yalabik M C and Gunton J D 1978 Phys Rm. A 17 455 

Ohta T Jasnav D and Kawasaki K 1982 Phys Rev Lett 49 1223 
Gran1 M and Gunton 1 D 1983 Phys. Rev. B 28 5496 
Mazenko G F and Valls 0 T 1983 Phys Rev. B 27 6811 

[5] Sahni P S ,  Grest G S and Safran S A 1983 Phys. Rev. Lett 50 60 
Safran S A, Sahni P S and Grest G S 1983 Phys. Rev. B 28 2693 

161 Phani M K, Lebavirz J I Kalos M H and Penrose 0 1980 Phys. Rw. Lea 45 366 
Sahni P, Dee G, Gunton J D, Phani M K, Lebowitz J L and Kalos M H 1981 Phys Ro! B 24 410 

[7] Gawlinski E T. Gram M, Gunton J D and Kaski K 1985 Phys. Rev. B 31 281 
Vinals J, Grant M, San Miguel M, Gunton J D and Gawlinski E T 1985 Phys. Rev. L E ~ L  54 1264 

(81 Hymayun K and Bray A J 1991 1 Phys A: Moth. G m  24 1915 
191 Huw D A and Henley C L 1985 Phys Rev. LetL 54 2708 

Huse D A, Henley C L and Fisher D S 1985 Phys. Rn: Lett 55 2924 
(IO] Grest G S and Srolovitz D J 1985 Phys, Rev. B 32 3014 

Chavdhury D and Kumar S 1987 1 Stat. Phys 49 855 
Oh J H and Choi D I 1986 Phys. Rev. B 33 3448 
Chowdhury D I9901 Physique 51 2681 

[I21 Fisher D S and Huse D A 1988 Phys. Rev. B 38 373 
(131 Newman T J and Bray A J 19901 Phys. A: Math Gen 23 L279; 4491 
I141 FuNkawa H 1989 1 Phys SOE. Jnpan 58 216; 1989 Phys. Rev. B 40 2341 
[15] Villain J 1984 Phys Ro: LetL 52 1543 
[I61 Nattemann T 1985 Phys. Stow Solidi b 132 125 
1171 Humayan K and Bray A J 1991 to be published 
[IS] Huse D A 1986 Phys. Ro! B 34 7845 
[I91 P o d  G 1982 Small-Angie X-ray Sconering ed 0 Glatter and 0 Kratsky (New York Academic) 

Debye P, Anderson H R and Brumberger H 1957 1 AppL Phys. 28 679 
(201 Wong P-z 1985 Phys Rev. B 32 7417 

Wong P-z and Bray A J 1988 Phys. Ro! B 37 7751 
[ZI] Puri S ,  Chowdhury D and Parekh N 1991 Non-algebraic domain g m h  in random magnets: a cell 

P h ” a  vol 8, ed C Domb and J L Lebavilz (New York Academic) p 2607 

[!!I c!!-d!!q a. GZ!!! M 2nd G!!!!!O!! .r a 1987 P!!y a, E 35 679 

dynamical approach 1 Phys A: Morh G m  in p r e s  


